Common fixed points and best proximity points of two cyclic self-mappings
نویسنده
چکیده
*Correspondence: [email protected] 1Instituto de Investigacion y Desarrollo de Procesos, Universidad del Pais Vasco, Campus of Leioa (Bizkaia), Aptdo. 644, Bilbao, Bilbao 48080, Spain Full list of author information is available at the end of the article Abstract This paper discusses three contractive conditions for two 2-cyclic self-mappings defined on the union of two nonempty subsets of a metric space to itself. Such self-mappings are not assumed to commute. The properties of convergence of distances to the distance between such sets are investigated. The presence and uniqueness of common fixed points for the two self-mappings and the composite mapping are discussed for the case when such sets are nonempty and intersect. If the space is uniformly convex and the subsets are nonempty, closed and convex, then the iterates of points obtained through the self-mapping converge to unique best proximity points in each of the subsets. Those best proximity points coincide with the fixed point if such sets intersect.
منابع مشابه
Existence of best proximity and fixed points in $G_p$-metric spaces
In this paper, we establish some best proximity point theorems using new proximal contractive mappings in asymmetric $G_{p}$-metric spaces. Our motive is to find an optimal approximate solution of a fixed point equation. We provide best proximity points for cyclic contractive mappings in $G_{p}$-metric spaces. As consequences of these results, we deduce fixed point results in $G_{p}$-metric spa...
متن کاملCoincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces
We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...
متن کاملOn Best Proximity Points in metric and Banach spaces
Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...
متن کاملSome results on convergence and existence of best proximity points
In this paper, we introduce generalized cyclic φ-contraction maps in metric spaces and give some results of best proximity points of such mappings in the setting of a uniformly convex Banach space. Moreover, we obtain convergence and existence results of proximity points of the mappings on reflexive Banach spaces
متن کاملExistence of common best proximity points of generalized $S$-proximal contractions
In this article, we introduce a new notion of proximal contraction, named as generalized S-proximal contraction and derive a common best proximity point theorem for proximally commuting non-self mappings, thereby yielding the common optimal approximate solution of some fixed point equations when there is no common solution. We furnish illustrative examples to highlight our results. We extend so...
متن کاملOn best proximity points for multivalued cyclic $F$-contraction mappings
In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.
متن کامل